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Lecture Objectives

✓ Determine stress in members caused by

bending

✓ Discuss how to establish shear and

moment diagrams for a beam or shaft

✓ Determine largest shear and moment in a

member, and specify where they occur

✓ Consider members that are straight, symmetric x-section and

homogeneous linear-elastic material

✓ Consider special cases of unsymmetrical bending and members

made of composite materials
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Lecture Outline

✓ Shear and Moment Diagrams

✓ Graphical Method for Constructing Shear and

Moment Diagrams

✓ Bending Deformation of a Straight Member

✓ The Flexure Formula

✓ Unsymmetrical Bending
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Beam

✓ Straight prismatic 

✓ Made of homogeneous material

✓ Subjected to bending

✓ Having a cross-sectional area that 

is symmetrical with respect to an 

axis

✓ Bending moment is applied about 

an axis perpendicular to this axis 

of symmetry

Bending Deformation of a Straight Member
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Beam has a square cross section and is 

marked with longitudinal and transverse 

grid lines

The material within:

• Bottom portion of the bar  stretch

• Top portion of the bar  compress.

Between these two regions there must be a surface, called the neutral

surface, in which longitudinal fibers of the material will not undergo a

change in length

Bending Deformation of a Straight Member
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➢ First, the longitudinal axis x, from the

neutral surface, does not experience

any change in length. It becomes a

curve within x–y plane of symmetry,

➢ Second, all cross sections of the beam

remain plane and perpendicular to the

longitudinal axis during the

deformation.

➢ Third, any deformation of the cross

section within its own plane, will be

neglected.

In particular, the z axis, lying in the plane

of the cross section and about which the

cross section rotates, is called the neutral

axis.

Bending Deformation of a Straight Member
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Any line segment x located on the neutral surface, does not

change its length, whereas any line segment s located at the

arbitrary distance y above the neutral surface, will contract and

become after deformation s’.

By definition, the normal strain along s is determined as:

0
lim
s

s s

s


 

 




Bending Deformation of a Straight Member
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Any line segment x located on the neutral surface, does not

change its length, whereas any line segment s located at the

arbitrary distance y above the neutral surface, will contract and

become after deformation s’.

By definition, the normal strain along s is determined as,

0
lim
s

s s

s


 

 




Bending Deformation of a Straight Member
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The longitudinal normal strain will vary linearly

with y from the neutral axis.

A contraction - will occur in fibers located

above the neutral axis +y whereas elongation +

will occur in fibers located below the axis -y.

The maximum strain occurs at the outermost

fiber, located a distance of y=c from the neutral

axis.

y



 

max

c





Bending Deformation of a Straight Member

Normal strain distribution 

  max

max

y
y c

c

 
 

 

  
  

 
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When a moment is applied to the beam,

therefore, it will only cause a normal stress in

the longitudinal or x direction. All the other

components of normal and shear stress will be

zero. It is this uniaxial state of stress that

causes the material to have the longitudinal

normal strain component. Furthermore, by

Poisson’s ratio, there must also be associated

strain components which deform the plane of

the cross-sectional area, although here we

have neglected these deformations. Such

deformations will, however, cause the cross-
sectional dimensions to become smaller below

the neutral axis and larger above the neutral

axis.

Bending Deformation of a Straight Member
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Assume that:

Material behaves in a linear-elastic manner

max

max

.

y

c

E

y

c

 

 

 

 
  

 



 
  

 

For positive M which acts in the direction +y

positive values of y give negative values for 

that is, a compressive stress since it acts in the

negative x direction.

negative y values will give positive or tensile

values for 

The Flexure Formula
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We can locate the position of the neutral axis on the cross section by

satisfying the condition that the resultant force produced by the

stress distribution over the cross-sectional area must be equal to

zero.

Noting that the force dF= .dA acts on the arbitrary element dA

max

max

;

0 . .

. 0

. 0

R x

A A

A

A

F F

y
dA dA

c

y dA
c

y dA

 





 
   

 

 
  
 





 





The Flexure Formula
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We can determine the stress in the beam from the requirement that

the resultant internal moment M must be equal to the moment

produced by the stress distribution about the neutral axis.

The moment of dF about the neutral axis is dM

 

max

2max max

max

;

. . . . .

. .

.

R zz

A A A

A

M M

y
M y dF y dA y dA

c

M y dA I
c c

M c

I

 

 





 
    

 

 
  
 

 



  



2.
A

I y dA 
The integral represents the moment of inertia of the cross-sectional 

area about the neutral axis

The Flexure Formula
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2max max

max

. .

.

A

M y dA I
c c

M c

I

 



 
  
 

 



The maximum normal stress in the member, which occurs at a

point on the cross-sectional area farthest away from the

neutral axis

The resultant internal moment, determined from the method

of sections and the equations of equilibrium, and calculated

about the neutral axis of the cross section

The perpendicular distance from the neutral axis to a point

farthest away from the neutral axis. This is where acts

The moment of inertia of the cross-sectional area about the

neutral axis

max

c

M

I

The Flexure Formula
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max

max

.

.

M c

I M y

y I

c





 


 

 
    

  

The Flexure Formula
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.i i

i

y A
y

A




.dI I A 

4

4
zI r




3

(z) (y).

12
z

a b
I 

Geometric Parameters (Review)

Moments of Inertia

(Rectangular CS)

Moments of Inertia 

(Circular CS)

Moments of Inertia (Combined CS)

CS Centroid Coordinate
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Unsymmetrical Bending

A condition for flexure formula is the symmetric x-sectional

area of beam about an axis perpendicular to neutral axis

However, the flexure formula can also be applied either to a

beam having x-sectional area of any shape OR to a beam having

a resultant moment that acts in any direction
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Moment Arbitrarily Applied

.z .y z

y z

M M y

I I
   

Unsymmetrical Bending

 = normal stress at the point

y, z = coordinates of point measured from x,

y, z axes having origin at centroid of x-

sectional area and forming a right-

handed coordinate system
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Moment Arbitrarily Applied

.z .y z

y z

M M y

I I
   

Unsymmetrical Bending

My, Mz = resultant internal moment components

along principal y and z axes. Positive if

directed along +y and +z axes. Can also be

stated as My = M sin  and Mz = M cos  ,

where  is measured positive from +z axis

toward +y axis

Iy, Iz = principal moments of inertia computed

about the y and z axes, respectively
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tan tanz

y

I

I
 

Orientation of the Neutral Axis

Unsymmetrical Bending

= +
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The Elastic Curve

 It is useful to sketch the

deflected shape of the loaded

beam, to “visualize” computed

results and partially check the

results.

 The deflection diagram of the

longitudinal axis that passes

through the centroid of each x-

sectional area of the beam is

called the elastic curve.
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• Roller support at B  
displacements is zero

• Pin supports at D 
displacements is zero

• AC: negative moment 
elastic curve concave 
downwards

• C  D : positive moment 
elastic curve concave upwards

The Elastic Curve

• At C, there is an inflection point where curve changes 
from concave up to concave down (zero moment).
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Moment-Curvature Relationship

y



 

1

y




 

• It’s found that 

The Curvature (1/) 
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If material is homogeneous and shows linear-elastic
behavior, Hooke’s law applies. Since flexure formula also
applies, we combing the equations to get

 : radius of curvature at a specific point on elastic curve

M: internal moment in beam at point where is to be
determined.

E : material’s modulus of elasticity.

I : beam’s moment of inertia computed about neutral axis.

Moment-Curvature Relationship

1 M

EI

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• EI is the flexural rigidity and is always positive.

• Sign for  depends on the direction of the moment.

✓ when M is positive,  extends above the beam.

✓ When M is negative,  extends below the beam.

Moment-Curvature Relationship
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Stress-Curvature Relationship

Using flexure formula, curvature is also

1

1

.

M

EI

EyM y

I







 

 
 


Moment and Stress-Curvature Relationships are valid for
either small or large radii of curvature
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Slope and Displacement

Slope and displacement by integration
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Slope and displacement by integration

The equation of the elastic curve for a beam can be
expressed mathematically as:

Let’s represent the curvature in terms of  and x.
 f x 

 

2 2

3 2
2

1

1

d dx

d dx



 

 
 

 

2 2

3 2
2

1

1

M d dx M

EI EId dx



 
  

 
 
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Most engineering codes specify limitations on deflections for

tolerance or aesthetic purposes.

Slope of elastic curve determined from d/dx is very small and its

square will be negligible compared with unity.

Therefore, by approximation

Differentiate each side with respect to x and substitute

V = dM/dx, we get

2 2

2 2

1 M d M d
M EI

EI dx EI dx

 


    

 
2 3

2 4

d d d
V x EI EI

dx dx dx

  
  

 
Flexural rigidity is constant along beam

Slope and displacement by integration
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Differentiating again with respect to x and substitute

w= dv/dx, we get

Generally, it is easier to determine the internal moment M as a

function of x, integrate twice, and evaluate only two integration

constants.

For convenience in writing each moment expression, the origin for

each x coordinate can be selected arbitrarily.

 
2 2 4

2 2 4

d d d
w x EI EI

dx dx dx

  
  

 
Flexural rigidity is constant along beam

Slope and displacement by integration
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Possible boundary conditions are:

Slope and displacement by integration
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If a single x coordinate cannot be used to express the eqn for beam’s
slope or elastic curve, then continuity conditions must be used to
evaluate some of the integration constants.

Slope and displacement by integration
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Procedure for analysis

Elastic curve

Draw an exaggerated view of the beam’s elastic 
curve. 

Recall that zero slope and zero displacement occur at 
all fixed supports, and zero displacement occurs 

at all pin and roller supports.

Establish the x and  coordinate axes. 

The x axis must be parallel to the undeflected beam 
and can have an origin at any pt along the beam, 
with +ve direction either to the right or to the left.

Slope and displacement by integration
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Procedure for analysis

Elastic curve

If several discontinuous loads are present, establish x
coordinates that are valid for each region of the 

beam between the discontinuties. 

Choose these coordinates so that they will simplify 
subsequent algrebraic work.

Slope and displacement by integration
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Procedure for analysis

Load or moment function

For each region in which there is an x coordinate, 

express that loading w or the internal moment M
as a function of x.

In particular, always assume that M acts in the +ve 

direction when applying the eqn of moment 

equilibrium to determine M = f(x).

Slope and displacement by integration
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Procedure for analysis

Slope and elastic curve

Provided EI is constant, apply either the load eqn 
EI d4/dx4 = w(x), which requires four 

integrations to get  = (x), or the moment eqns 
EI d2 /dx2 = M(x), which requires only two 

integrations. For each integration, we include a 
constant of integration.

Constants are evaluated using boundary conditions 
for the supports and the continuity conditions that 
apply to slope and displacement at pts where two 

functions meet.

Slope and displacement by integration
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Procedure for analysis

Slope and elastic curve

Once constants are evaluated and substituted back 
into slope and deflection eqns, slope and 

displacement at specific pts on elastic curve can 
be determined.

The numerical values obtained is checked graphically 
by comparing them with sketch of the elastic 

curve.

Realize that +ve values for slope are 
counterclockwise if the x axis extends +ve to the 
right, and clockwise if the x axis extends +ve to 

the left. For both cases, +ve displacement is 
upwards.

Slope and displacement by integration
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EXAMPLE 12.1

Cantilevered beam shown is subjected to a vertical 

load P at its end. Determine the eqn of the elastic 

curve. EI is constant.

Slope and displacement by integration
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g

Elastic curve: Load tends 

to deflect the beam. 

By inspection, the internal 

moment can be 

represented throughout 

the beam using a 

single x coordinate.

Moment function: From free-body diagram, with M

acting in the +ve direction, we have

PxM 
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g

Slope and elastic curve:

Applying Eqn 12-10 and integrating twice yields

 

 

 3
6

2
2

1

21

3

1

2

2

2

CxC
Px

EI

C
Px

dx

d
EI

Px
dx

d
EI












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g

Slope and elastic curve:

Using boundary conditions d/dx = 0 at x = L, and  = 

0 at x = L, Eqn (2) and (3) becomes

21

3

1

2

6
0

2
0

CLC
PL

C
PL




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g

42

Slope and elastic curve:

Thus, C1 = PL2/2 and C2 = PL3/3. Substituting these 

results into Eqns (2) and (3) with  = d/dx, we get

Maximum slope and displacement occur at A (x = 0),

 

 323

22

23
6

2
0

LxLx
EI

P

xL
EI

P







EI

PL

EI

PL
AA

32

32

 
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g

Slope and elastic curve:

Positive result for A indicates counterclockwise 
rotation and negative result for A indicates that A is 

downward.

Consider beam to have a length of 5 m, support load 
P = 30 kN and made of A-36 steel having 

Est = 200 GPa. 



Mechanics of Materials (EM3213)

M. F. GHANAMEH

2017-2018
-44-

g

Slope and elastic curve:

Using methods in chapter 11.3, assuming allowable 
normal stress is equal to yield stress allow = 250 MPa, 

then a W31039 would be adequate 
(I = 84.8(106) mm4). 

From Eqns (4) and (5),

EI

PL

EI

PL
AA

32

32

 
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Slope and elastic curve:

From Eqns (4) and (5),

   

     

   

     
mm7.73

mm108.84N/mm102003

mm/m10m5N/kN10kN30

rad0221.0
mm108.84N/mm102002

mm/m10m5N/kN10kN30

4623

3233

4623

2233























A

A




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g

Slope and elastic curve:

Since 2A = (d/dx)2 = 0.000488 << 1, this justifies the 

use of Eqn 12-10 than the more exact 12-4. 

Also, since it is for a cantilevered beam, we’ve 

obtained larger values for  and  than would be 

obtained otherwise.
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