Mechanics of Materials

Lecture 3

Strain

Mohamad Fathi GHANAMEH

الجاوعـــــــة الدوليـــــــة للربــــــاط +ه⊘∧هالا +هXOه۲۱۱ و¢ه. Université Internationale de Rabat

Lecture Objectives

- ✓ Define concept of normal strain.
- Define concept of shear strain.
- ✓ Determine normal and shear strain in engineering applications
- \checkmark Understand strain measurement concept

_ة للار •ΟΛ•Π٤+ +•XO•AN•I+ I OOΘ•E niversité Internationale de Rabat

Lecture Outline

- ✓ Deformation
- ✓ Strain
- Strain MeasurementMethods
- ✓ Strain Gauge

Deformation

Whenever a force is applied to a body, it will tend to change the body's shape and size. These changes are referred to as *deformation*.

✓ Can be highly visible or practically unnoticeable.
✓ Can also occur when temperature of a body is changed.
✓ Is not uniform throughout a body's volume, thus change in geometry of any line segment within body may vary along its length.

Deformation

Before

After

الجارعـــــــــة الدوليـــــــة للربـــــــاط +ه٢٥/٥٠٤ + هـ٥٥/٥٠٤ + المهره-٤ Université Internationale de Rabat

- The vertical line is lengthened.
- The horizontal line is shortened.
- The inclined line changes its length and rotates.

Strain Concept

Strain is actually measured by experiments, and once the strain is obtained we can easily determine the stress acting within the body,

الجاهعـــــــــــة الدوليــــــــة للربـــــــاط +ه٥٨هالالههـــــــة الهالاههـــــــة للربـــــــاط université Internationale de Rabat

Normal Strain

- \checkmark Defined as the elongation or contraction of a line segment per unit of length
- \checkmark Consider line *AB* in figure below
- ✓ After deformation, Δs changes to $\Delta s'$

Normal Strain

$$\varepsilon = \frac{\Delta s' - \Delta s}{\Delta s}$$

$$\varepsilon = \lim_{B \to A \text{ along } n} \frac{\Delta s' - \Delta s}{\Delta s}$$

 $\varepsilon > 0$ Initial line will elongate

Deformed body

 Mechanics of Materials (EM3213) M. F. GHANAMEH 2017-2018

-8-

Normal Strain

Dimensionless quantity : since it is a ratio of two lengths.

$$\varepsilon = \frac{m}{m}$$
 $\varepsilon = \frac{\mu m}{m} = 10^6 \frac{m}{m}$

For experimental work, strain is expressed as a percent,

 $\varepsilon = 120.10^{-6} m / m = 120 \mu m / m = 0,0120\% = 120 \mu \varepsilon = 120 micros$

الجامعــــــة الدوايـــــة للربـــــاط ++00/024 ++0000474 +1 QQO0E Université Internationale de Rabat Mechanics of Materials (EM3213) M. F. GHANAMEH 2017-2018

Aerospace

Shear Strain

- ✓ Defined as the change in angle that occurs between two line segments that were originally perpendicular to one another
- ✓ This angle is denoted by γ (gamma) and measured in radians (rad).

Shear Strain

Consider line segments AB and AC originating from same point A in a body, and directed along the perpendicular n and t axes After deformation, lines become curves, such that angle between them at A is θ '

Iniversité Internationale de Rabat

2017-2018

Cartesian strain components

Using above definitions of normal and shear strain, we show how they describe the deformation of the body

Divide body into small elements with undeformed dimensions of Δx , Δy and Δz

Undeformed element

Cartesian strain components

Since element is very small, deformed shape of element is a parallelepiped

Approx. lengths of sides of parallelepiped are

 $(1 + \varepsilon_x) \Delta x$ $(1 + \varepsilon_y) \Delta y$ $(1 + \varepsilon_z) \Delta z$

Cartesian strain components

Shear strains cause a change in its *shape*

To summarize, state of strain at a point requires specifying 3 normal strains; ε_x , ε_y , ε_z and 3 shear strains of γ_{xy} , γ_{yz} , γ_{xz}

Small Strain Analysis

Most engineering design involves applications for which only *small deformations* are allowed, therefore, we will assume that the deformations that take place within a body are almost infinitesimal. In particular, the *normal strains* occurring within the material are *very small* compared to 1.

This assumption is widely applied in practical engineering problems, and is referred to as **small strain analysis**

الجاهعــــــــة الدوليــــــة للربـــــــا No∧oLՀ+ +oXOoЧNol+ I QQOoE + toXOo niversité Internationale de Rabat

Example 1

Rod below is subjected to temperature increase along its axis, creating a normal strain of $\varepsilon_z = 40(10^{-3})z^{1/2}$, where z is given in meters.

Determine:

- (a) displacement of end *B* of rod due to temperature increase,
- (b) average normal strain in the rod.

الجامعــــــة الدوليــــــة للربــــــاد @∧₀LՀ+ +₀XO₀YN₀I+ I QQ⊖₀E Iniversité Internationale de Rabat

Example 2

Plate is deformed as shown in figure. In this deformed shape, horizontal lines on the on plate remain horizontal and do not change their length.

Determine

- (a) average normal strain along side *AB*,
- (b) average shear strain in the plate relative to *x* and *y* axes

Strain Measurement Methods

Strain Measurement Methods

- 1. Mechanical
- 2. Moiré technique
- 3. Interferometric strain gages
- 4. Electric strain gages
- 5. Brittle coatings
- 6. Photoelasticity
- 7. X-ray diffraction
- 8. Holographs
- 9. Laser speckle interferometry

What is a Strain Gauge ?

- 1. Strain Gauge is a device used to measure deformation (strain) of an object.
- 2. Strain gauges have been developed for the accurate measurement of strain
- 3. Fundamentally, all strain gauges are designed to convert mechanical motion into an electronic signal.

The gauge shown here is primarily sensitive to strain in the X direction, as the majority of the wire length is parallel to the X axis.

Strain gages in the aerospace industry Experimental stress analysis on an aerospace component

UR

SG bridge with integrated compensating elements on a double bending beam

Strain gages in the manufacture of transducers SG installed on a customized torque transducer

الجارعــــــــة الدوليـــــــة للربــــــاط ٥٠٨٥ل٤+ +٥٦٥٥٢٢٥٩٠+ ا QQO،E Université Internationale de Rabat

الجامعــــــة الدوليــــــة للربـــــاط +₀⊙∧₀LՀ+ +₀XO₀YH₀I+ I QQ⊖₀E Université Internationale de Rabat Mechanics of Materials (EM3213) M. F. GHANAMEH 2017-2018

Aerospace

Pipe specimen made of carbon-fiber reinforced plastic in a torsion fracture test

الجارعــــــــة الدوليـــــــة للربــــــاط +₀O∧₀UՀ+ +₀XO₀YH₀I+ I QQO₀E Université Internationale de Rabat

Strain gages in the electrical industry For monitoring of the loads during the punching of PCBs

+.0/.12+ +.XO.4/1.1+ 1 QQO.E Université Internationale de Rabat

+.OV.T +.XO.ANI+ I OOOPE Université Internationale de Rabat

Pam Thurber; Vermont Agency of Transportation (VTrans)

الجامعــــــــة الدوليـــــــة للربـــــاط +₀⊙∧₀⊔Հ+ +₀∑O₀YII₀I+ I QQ⊖₀E Université Internationale de Rabat

