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• A uniform rod is subjected to a slowly increasing load

• The elementary work done by the load P as the rod 

elongates by a small dx is

• The total work done by the load for a deformation y,

which is equal to the area under the load–deflection

curve.

• which results in an increase of strain energy in the

rod.

 dU P dx elementary work 

0

x

U P dx total work strain energy  

Strain Energy
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Strain Energy
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• In the case of a linear elastic deformation,
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• To eliminate the effects of size, evaluate the strain-

energy per unit volume,

densityenergy straindu
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• As the material is unloaded, the stress returns to zero but 

there is a permanent deformation.  Only the strain energy 

represented by the triangular area is recovered.

• Remainder of the energy spent in deforming the material 

is dissipated as heat.

• The total strain energy density resulting from the 

deformation is equal to the area under the curve to 1.

Strain Energy Density
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• The strain energy density resulting from 

setting 1  R is the modulus of toughness.

• The energy per unit volume required to cause 

the material to rupture is related to its ductility 

as well as its ultimate strength.

• If the stress remains within the proportional 

limit,
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• The strain energy density resulting from 

setting 1  Y is the modulus of resilience.

resilience of modulus
E

u Y
Y 

2

2

Strain Energy Density
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• In an element with a non-uniform stress distribution,
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• For values of u < uY , i.e., below the proportional 

limit,
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• Under axial loading, dxAdVAPx 
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• For a rod of uniform cross-section,

Elastic Strain Energy for Normal Stresses
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• For a beam subjected to a bending load,
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• Setting  dV = dA dx,
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• For an end-loaded cantilever beam,
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Elastic Strain Energy for Normal Stresses
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• For a material subjected to plane shearing 

stresses,


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xyxy du





0

• For values of xy within the proportional limit,
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• The total strain energy is found from
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Strain Energy For Shearing Stresses
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• For a shaft subjected to a torsional load,

• Setting  dV = dA dx,
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• In the case of a uniform shaft,
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Strain Energy For Shearing Stresses
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Taking into account only the normal

stresses due to bending, determine the

strain energy of the beam for the

loading shown.

SOLUTION:

• Determine the reactions at A and B

from a free-body diagram of the 

complete beam.

• Integrate over the volume of the 

beam to find the strain energy.

• Apply the particular given

conditions to evaluate the strain

energy.

• Develop a diagram of the bending 

moment distribution.

Sample Problem 1
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SOLUTION:

• Determine the reactions at A and B

from a free-body diagram of the 

complete beam.

L

Pa
R

L

Pb
R BA 

• Develop a diagram of the bending 

moment distribution.
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M  21

Sample Problem 1
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• Integrate over the volume of the beam to find 

the strain energy.
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Sample Problem 1
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• Previously, we found the strain

energy by integrating the energy

density over the volume.

For a uniform rod,
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• Strain energy may also be found from 

the work of the single load P1,
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• Knowing the relationship between 

force and displacement,
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Work and Energy Under a Single Load
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• Strain energy may be found from the work of other types of single concentrated

loads.
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• Transverse load
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• Bending couple
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• Torsional couple

Work and Energy Under a Single Load
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• If the strain energy of a structure due to a

single concentrated load is known, then the

equality between the work of the load and

energy may be used to find the deflection.

lLlL BDBC 8.06.0 

From statics,
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From the given geometry,

• Strain energy of the structure,
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• Equating work and strain energy,
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Sample Problem 2
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Members of the truss shown consist of

sections of aluminum pipe with the

cross-sectional areas indicated. Using

E = 73 GPa, determine the vertical

deflection of the point E caused by the

load P.

SOLUTION:

• Find the reactions at A and B from a

free-body diagram of the entire

truss.
• Apply the method of joints to

determine the axial force in each

member.

• Evaluate the strain energy of the

truss due to the load P.

• Equate the strain energy to the work

of P and solve for the displacement.

Sample Problem 3
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SOLUTION:

• Find the reactions at A and B from a free-body 

diagram of the entire truss.

821821 PBPAPA yx 

• Apply the method of joints to determine the 

axial force in each member.
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Sample Problem 3
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• Evaluate the strain energy of 

the truss due to the load P.
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• Equate the strain energy to the work by P

and solve for the displacement.
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Sample Problem 3


