Aerospace Structural Analysis

Lecture 3

Strain Transformation

Mohamad Fathi GHANAMEH

OAOLE+ +OXOOHNOH | QQOOE niversité Internationale de Rabat **Aerospace Structural Analysis M. F. GHANAMEH 2017-2018**

Aerospace

Lecture Objectives

- \checkmark Derive equations for transforming strain components between coordinate systems of different orientation
- \checkmark Use derived equations to obtain the maximum normal and maximum shear strain at a point
- \checkmark Determine the orientation of elements upon which the maximum normal and maximum shear strain acts
- \checkmark Discuss a method for determining the absolute maximum shear strain at a point when material is subjected to plane and 3-dimensional states of strain
- ✓ Derive equations for determining the strain and stress using strain rosettes.

دة الدولا OA0UE+ +0XO04W0I+ IQQO0E iiversité Internationale de Rabat

Lecture Outline

- ✓ Plane-Strain Transformation
- ✓ General Equations of Plane Strain Transformation
- ✓ Principal strain and Maximum In-Plane Shear Strain
- \checkmark Mohr's Circle Plane Strain
- \checkmark Absolute Maximum Shear strain
- ✓ Strain Gauge
- ✓ Strain Rosettes.

0A0LIE+ +0XO04H0l+ | QQO0E niversité Internationale de Rabat

Plane-Strain Vs Plane-Stress

 $+0.00151 +0.00044 +0.00006$ Université Internationale de Rabat

Plane-Strain Vs Plane-Stress

 $+0.00151 +0.00044 +0.00065$ Université Internationale de Rabat

Plane-Strain Vs Plane-Stress

Although plane strain and plane stress each have three components lying in the same plane, realize that plane stress does not necessarily cause plane strain or vice versa.

Plane stress

9000 | HoN4oOXo+ +3LoA@o+ **Jniversité Internationale de Rabat**

Plane-Strain Transformation

Sign Convention.

Normal strains ε_x and ε_y are positive if they cause elongation along the x and y axes, respectively.

The shear strain γ_{vx} is positive if the interior angle AOB becomes smaller than 90°. This sign convention also follows the corresponding one used for plane stress.

Plane-Strain

If the angle between the x and x' axes is θ

$$
\varepsilon_{x'} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} + \frac{\varepsilon_{x} - \varepsilon_{y}}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta
$$

$$
\frac{\gamma_{xy'}}{2} = -\frac{\varepsilon_{x} - \varepsilon_{y}}{2} \sin 2\theta + \frac{\gamma_{xy}}{2} \cos 2\theta
$$

$$
\varepsilon_{y'} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} - \frac{\varepsilon_{x} - \varepsilon_{y}}{2} \cos 2\theta - \frac{\gamma_{xy}}{2} \sin 2\theta
$$

 $+0.001 +1.14 + 5.000 + 1.00$ Université Internationale de Rabat

Principal In-Plane Strains

It can be seen that the magnitudes of ε_{x} , ε_{y} and $\gamma_{x'y'}$ depend on the angle of inclination θ of the planes on which these deformation measured. In engineering practice it is often important to determine the orientation of the element that element's deformation is caused only by normal strains, with no shear strain. When this occurs the normal strains are referred to as principal strains, and if the material is isotropic, the axes along which these strains occur will coincide with the axes that define the planes of principal stress.

دّ الدولا A.JE+ +.XO.HI.H | QQO.E iversité Internationale de Rabat

Principal In-Plane Strains

$$
\tan 2\theta_p = \frac{\gamma_{xy}}{(\varepsilon_x - \varepsilon_y)}
$$

$$
\varepsilon_{1,2} = \frac{\varepsilon_x + \varepsilon_y}{2} \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}
$$

$$
\frac{\gamma}{2} = 0
$$

 $+0.00151 +0.00044 +0.00065$ Université Internationale de Rabat

Maximum In-Plane Shear Strain

$$
\tan 2\theta_{s} = -\frac{\left(\varepsilon_{x} - \varepsilon_{y}\right)}{\gamma_{xy}}
$$

$$
\frac{\gamma_{\text{max}}}{2} = \sqrt{\left(\frac{\varepsilon_{x} - \varepsilon_{y}}{2}\right)^{2} + \left(\frac{\gamma_{xy}}{2}\right)^{2}}
$$

$$
\varepsilon_{x'} = \varepsilon_{y'} = \varepsilon_{avg} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2}
$$

90001 HoN4oORo+ +3Lon0o+ Université Internationale de Rabat

$$
\left(\varepsilon_{x'} - \frac{\varepsilon_{x} + \varepsilon_{y}}{2}\right)^{2} + \left(\frac{\gamma_{xy'}}{2}\right)^{2} = \left(\frac{\varepsilon_{x} - \varepsilon_{y}}{2}\right)^{2} + \left(\frac{\gamma_{xy}}{2}\right)^{2}
$$

$$
\left(\varepsilon_{x'} - \varepsilon_{avg}\right)^{2} + \left(\frac{\gamma_{xy'}}{2}\right)^{2} = R^{2} \left\{\varepsilon_{avg} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2}
$$

$$
R = \sqrt{\left(\frac{\varepsilon_{x} - \varepsilon_{y}}{2}\right)^{2} + \left(\frac{\gamma_{xy}}{2}\right)^{2}}
$$

$$
\left(\varepsilon_{x} - \frac{\varepsilon_{x} + \varepsilon_{y}}{2}\right)^{2} + \left(\frac{\gamma_{x y'}}{2}\right)^{2} = \left(\frac{\varepsilon_{x} - \varepsilon_{y}}{2}\right)^{2} + \left(\frac{\gamma_{x y}}{2}\right)^{2}
$$
\n
$$
\left(\varepsilon_{x} - \varepsilon_{\text{avg}}\right)^{2} + \left(\frac{\gamma_{x y'}}{2}\right)^{2} = R^{2}
$$
\n
$$
\varepsilon_{\text{avg}} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2}
$$
\n
$$
R = \sqrt{\left(\frac{\varepsilon_{x} - \varepsilon_{y}}{2}\right)^{2} + \left(\frac{\gamma_{x y}}{2}\right)^{2}}
$$
\n
$$
R = \sqrt{\left(\frac{\varepsilon_{x} - \varepsilon_{y}}{2}\right)^{2} + \left(\frac{\gamma_{x y}}{2}\right)^{2}}
$$
\n
$$
R = \sqrt{\left(\frac{\varepsilon_{x} - \varepsilon_{y}}{2}\right)^{2} + \left(\frac{\gamma_{x y}}{2}\right)^{2}}
$$
\n
$$
R = \sqrt{\left(\frac{\varepsilon_{x} - \varepsilon_{y}}{2}\right)^{2} + \left(\frac{\gamma_{x y}}{2}\right)^{2}}
$$

Aerospace Structural Analysis M. F. GHANAMEH 2017-2018

-14-

School
of Automotive
Engineering

School of
Aerospace
Engineering

9600 | HoN400Xo+ +3LoA0o+ Jniversité Internationale de Rabat

9600 | HoN400Xo+ +3LoA0o+ Jniversité Internationale de Rabat **Aerospace Structural Analysis M. F. GHANAMEH 2017-2018**

School
of Automotive
Engineering

Aerospace

Aerospace Structural Analysis M. F. GHANAMEH 2017-2018

-17-

of Automotive
Engineering

Connect point A with the center C of the circle and determine CA by trigonometry. This distance represents the radius R of the circle, 2 2 **Mohr's Circle**

ion of the Circle

point A with

er C of the

determine CA

nometry. This

represents the

of the circle,
 $\frac{-\varepsilon_y}{2}\Big)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2$

Aerospace Stru

M. F. GHA **Mohr's Ci**
 Construction of the Circle

Connect point A with

the center C of the

circle and determine CA

by trigonometry. This

distance represents the

radius R of the circle,
 $R = \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{$ **Construction of the Circle**

-18-

Aerospace Structural Analysis M. F. GHANAMEH 2017-2018

-19-

School
of Automotive
Engineering

School of

Aerospace
Engineering

Principal Strains

The principal strains ε_{P1} and ϵ_{P2} ($\epsilon_{P1} \geq \epsilon_{P2}$) are the coordinates of points B and D where the circle intersects the axis ε , i.e., where $\gamma = 0$ These stresses act on planes defined by angles θ_{P1} and θ_{P2} , represented on the circle by angles measured from the radial reference line CA to lines CB and CD, respectively.

Aerospace Structural Analysis M. F. GHANAMEH 2017-2018

of Automotive

Aerospace Structural Analysis M. F. GHANAMEH 2017-2018

-21-

of Automotive

Aerospace Structural Analysis M. F. GHANAMEH 2017-2018

-22-

of Automotive
Engineering

ے اللا دّ الدولا 000- 1-101400-910-1-1000-5 Iniversité Internationale de Rabat

ε_1 and ε_2 have the same sign

For all three circles, it is seen that although the maximum in-plane shear strain is

 $\gamma_{x'y'} = (\varepsilon_1 - \varepsilon_2)$

This value is *not* the absolute maximum shear strain. Instead, from the figure

 γ abs = ε_1 max The absolute maximum shear strain will occur out of the plane

0A0LIE+ +0XO04H0l+ | QQO0E niversité Internationale de Rabat

 $x - y$ plane strain

ے اللات **+**0A0LLE+ +0XO0+H0H | QQO0E Iniversité Internationale de Rabat

ϵ_1 and ϵ_2 have the opposite signs

For all three circles, it is seen that the maximum in-plane shear strain is equal to the absolute maximum shear stress:

$$
\gamma_{\text{max}} = \gamma_{x'y'} = \varepsilon_1 - \varepsilon_2
$$

ے تہ للات 000- 1-101400-910-1-1000-5 Jniversité Internationale de Rabat

Strain Gauge

What is a Strain Gauge ?

- 1. Strain Gauge is a device used to measure deformation (strain) of an object.
- 2. Strain gauges have been developed for the accurate measurement of strain
- 3. Fundamentally, all strain gauges are designed to convert mechanical motion into an electronic signal.

Strain Gauge

The gauge shown here is primarily sensitive to strain in the X direction, as the majority of the wire length is parallel to the X axis.

+0A0LLE+ +0XO0+H0H | QQO0E Université Internationale de Rabat

For a general loading on a body, however, the strains at a point on its free surface are determined using a cluster of three electricalresistance strain gauges, arranged in a specified pattern.

This pattern is referred to as a **strain rosette**, and once the normal strains on the three gauges are measured, the data can then be transformed to specify the state of strain at the point.

ے تہ للات $0A_0L15 + 6XO_0H10 + 1QQO_0E$ niversité Internationale de Rabat

Since these strains are measured only in the plane of the gauges, and since the body is stress-free on its surface, the gauges may be subjected to plane stress but not plane strain.

Although the strain normal to the surface is not measured, realize that the out-of-plane displacement caused by this strain will not affect the in-plane measurements of the gauges.

A.JE+ +.XO.HI.H | QQO.E niversité Internationale de Rabat

In the general case, the axes of the three gauges are arranged at the angles θ_a , θ_b and θ_c .

If the readings ε_a , ε_b and ε_c are taken, we can determine the strain components ε_x , ε_y and γ_{xy} at the point by applying the straintransformation equation, for each gauge. We have

 $\cos^2 \theta + \varepsilon \sin^2 \theta + \nu \sin \theta \cos \theta$ $\cos^2 \theta_1 + \varepsilon \sin^2 \theta_1 + \nu \sin \theta_1 \cos \theta_1$ $\cos^2 \theta + \varepsilon \sin^2 \theta + \nu \sin \theta \cos \theta$ $\varepsilon_a = \varepsilon_x \cos^2 \theta_a + \varepsilon_y \sin^2 \theta_a + \gamma_{xy} \sin \theta_a \cos \theta_a$ $\mathcal{E}_b = \mathcal{E}_x \cos^2 \theta_b + \mathcal{E}_y \sin^2 \theta_b + \gamma_{xy} \sin \theta_b \cos \theta_b$ $\varepsilon_c = \varepsilon_x \cos^2 \theta_c + \varepsilon_y \sin^2 \theta_c + \gamma_{xy} \sin \theta_c \cos \theta_c$

000- 1-101400-910-1-1000-5 niversité Internationale de Rabat

The values of ε_x , ε_y and γ_{xy} are determined by solving these three equations simultaneously.

Strain rosettes are often arranged in 45° or 60° patterns.

In the case of the 45° or "rectangular", $\theta_a = 0^\circ$, $\theta_b = 45^\circ$ and $\theta_c = 90^\circ$.

$$
\varepsilon_x = \varepsilon_a
$$

\n
$$
\varepsilon_y = \varepsilon_c
$$

\n
$$
\gamma_{xy} = 2.\varepsilon_b - (\varepsilon_a + \varepsilon_c)
$$

 $+0.001 +1.14 + 5.000 + 1.00$ Université Internationale de Rabat

Aerospace Structural Analysis M. F. GHANAMEH 2017-2018

School of

Aerospace
Engineering

4000 | H0N400X0+ +3L1000+ Université Internationale de Rabat

$$
\sigma_{1,2} = \frac{E}{1-\nu} \frac{\varepsilon_a + \varepsilon_c}{2} \pm \frac{E}{\sqrt{2}(1+\nu)} \sqrt{(\varepsilon_a - \varepsilon_b)^2 + (\varepsilon_c - \varepsilon_b)^2}
$$

$$
\theta = \tan^{-1} \left[\frac{2\varepsilon_b - \varepsilon_a - \varepsilon_c}{\varepsilon_a - \varepsilon_c} \right]
$$

 $+0.00151 +0.00044 +0.00065$ Université Internationale de Rabat

$$
\sigma_{\max} = \frac{E}{1 - \nu^2} \left(\varepsilon_{\max} + \nu \varepsilon_{\min} \right)
$$

$$
\sigma_{\min} = \frac{E}{1 - \nu^2} \left(\varepsilon_{\min} + \nu \varepsilon_{\max} \right)
$$

 $+0.00151 +0.00044 +0.00065$ Université Internationale de Rabat **Aerospace Structural Analysis M. F. GHANAMEH 2017-2018**

School of
Aerospace
Engineering

In the case of the 60°, $\theta_a = 0^\circ$, $\theta_b = 60^\circ$ and $\theta_c = 120^\circ$.

$$
\varepsilon_{x} = \varepsilon_{a}
$$
\n
$$
\varepsilon_{y} = \frac{1}{3} (2\varepsilon_{b} + 2\varepsilon_{c} - \varepsilon_{a})
$$
\n
$$
\gamma_{xy} = \frac{2}{\sqrt{3}} (\varepsilon_{b} - \varepsilon_{c})
$$

 $+0.001 +1.14 + 5.000 + 1.00$ Université Internationale de Rabat

0°/60°/120° Rosette

$$
\sigma_{1,2} = \frac{E}{1-\nu} \frac{\varepsilon_a + \varepsilon_b + \varepsilon_c}{3} + \frac{E}{1+\nu} \sqrt{\left(\frac{2\varepsilon_a - \varepsilon_b - \varepsilon_c}{3}\right)^2 + \frac{1}{3} (\varepsilon_c - \varepsilon_b)^2}
$$

$$
\theta = \tan^{-1} \left[\frac{\sqrt{3} (\varepsilon_b - \varepsilon_c)}{2\varepsilon_a - \varepsilon_b - \varepsilon_c} \right]
$$

 $+0.00151 +0.00044 +0.00065$ Université Internationale de Rabat

Material-Property Relationships

Assume that the material is homogeneous and isotropic and behaves in a linear-elastic manner

Material is subjected to multiaxial stress and strain.

Generalized Hooke's Law.

The stresses can be related to these strains by using the principle of superposition, Poisson's ratio, and Hooke's law.

versité Internationale de Rabat

Material-Property Relationships

$$
\varepsilon_{x} = \frac{1}{E} \Big(\sigma_{x} - \nu \Big(\sigma_{y} + \sigma_{z} \Big) \Big)
$$

Aerospace Structural Analysis M. F. GHANAMEH 2017-2018

 \overline{E} *x*

Material-Property Relationships

$$
\varepsilon_{x} = \frac{1}{E} \Big(\sigma_{x} - \nu \Big(\sigma_{y} + \sigma_{z} \Big) \Big)
$$

$$
\varepsilon_{y} = \frac{1}{E} \Big(\sigma_{y} - \nu \Big(\sigma_{x} + \sigma_{z} \Big) \Big)
$$

$$
\varepsilon_{z} = \frac{1}{E} \Big(\sigma_{z} - \nu \Big(\sigma_{y} + \sigma_{x} \Big) \Big)
$$

Aerospace Structural Analysis M. F. GHANAMEH 2017-2018

School of
Aerospace
Engineering